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A rigorous derivation is given for the "cons tan t -magnet iza t ion"  free 
energy density of the classical, anisotropic Heisenberg model with long- 
range Kac  interactions. The derivation involves bounding arguments  
similar to those used for a classical fluid by Lebowitz and Penrose. The 
present work is carried out in a constant-magnetizat ion ensemble. The free 
energy density is determined exactly under a quadruple-limiting process. 
The limits involved are a Lebowitz-Penrose type of triple-limiting process, 
followed by a final limit, X -+ 0, where X is a parameter  which represents the 
range over which each component  of the net spin density can vary. Explicit 
equations of state are determined for the special case of zero short-range 
interactions plus pure Kac-type long-range interactions. 
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1. I N T R O D U C T I O N  

The objective of  this work is to study the thermodynamics of  the classical, 
anisotropic Heisenberg model with long-range Kac interactions. Such a 
study represents an attempt to contribute to the understanding of the effects 
of  anisotropy on thermodynamic behavior. The effects of anisotropy are 
illustrated dramatically by the fact that the two-dimensional, isotropic 
(quantum) Heisenberg model with finite-range interactions does not exhibit a 
spontaneous magnetization for any nonzero temperature, (1) in contradistinc- 
tion with the well-known ferromagnetic phase transition of the corresponding 
(fully anisotropic) Ising model. (2) Such effects indicate that further rigorous 
investigations of the thermodynamic behavior of systems with anisotropic 
couplings are of interest. 

In this article, the second of a two-article (3) sequence, an exact solution 
is given to the classical, anisotropic Heisenberg model 4 with long-range Kac 
interactions. It is seen that the constant-magnetization ensemble (3) is a 
"na tu ra l "  ensemble for such a calculation. The technique employed, which 
is analogous to that used by Lebowitz and Penrose (5~ for a classical fluid, is 
to obtain upper and lower bounds on the constant-magnetization free energy 
density fro(P, x, N, 7). These bounds are established by dividing the lattice 
into P cells, each containing n ]attice sites. The bounds on f,~(p, X, iV, 7) 
involve the free energy density of each cell and an estimate of  the long-range 
intercell interactions. Under the Lebowitz-Penrose (5) limiting process and the 
additional limit as X --~ 0, the upper and lower bounds coalesce, determining 
the free energy density exactly. The parameter X which arises in the constant- 
magnetization ensemble (3) represents the range over which each component 
of  the net spin density can vary. 

The Lebowitz-Penrose limiting process involves three separate limits. 

1. The first limit is the thermodynamic limit of the entire lattice. This 
limit is taken such that the number of cells P becomes infinite (in all 
directions) while the number of sites in a cell n remains fixed. 

2. The long-range limit, 7 -+ 0, is the second limit performed. 
3. The final limit is the thermodynamic limit of each cell, i.e., the limit 

F/--~ o0.  

Section 2 contains a discussion of the Kac potential and the free energies 
arising in this problem. In Sections 3 and 4 upper and lower bounds are 
established for the constant-magnetization free energy density. Sections 5 
and 6 consist in a determination of  the convex envelope construction for the 
constant-magnetization free energy density and a discussion of the equations 

4 For  a d iscuss ion  o f  the  classical He i senberg  mode l  as the  classical l imit o f  the q u a n t u m  
mode l  see Ref.  4a. F o r  a d i scuss ion  o f  the  classical,  an i so t rop ic  He i senbe rg  mode l  with 
s h o r t - r a n g e  in te rac t ions  see Ref.  4b. 
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of  state 5 for  the classical, anisotropic  Heisenberg model  with long-range K a c  
interaction but  no shor t - range interactions. 

2. T H E  KAC POTENTIAL  A N D  FREE E N E R G Y  DENSIT IES 

We assume that  each coupl ing coefficient in the Hami l ton ian  6 for  the 
classical, anisotropic  Heisenberg model  can be writ ten as the sum o f  two 
terms as follows: 

J~,k, = qt,kl + Wi,k~ (1) 

for  i = x, y, z. Here  q,~,k~, qu.k~, and qz,kt are the short- range contr ibut ions to 
the coupl ing coefficients and  wx,k~, wu,~z, and w~.~ are the long-range " K a c "  
contr ibut ions  to the coupling coefficients. The  latter coefficients depend 
upon  y, the K a c  parameter ,  which is described below. We assume that  
qx.kz, q~.k~, and q~.kz satisfy the inequali ty 

[q,,~,l < O2/rfa +'2 (2) 

for  i = x, y, z where v is the dimensional i ty o f  the lattice and where D2 and 
Ez are finite, posit ive constants.  The functions wx,~z, wu.~, and w~,~t are 
assumed to be of  the K a c  form,  (5) i.e., 

w,.k, = ~,vr (3) 

for  / = x, y, z (the label y is suppressed in w,.~ for  convenience).  We assume 
the following bounds  for  r 

Ir < A (4a) 
and 

[r < Da/tv+'= (4b) 

for  i = x, y, z, where bo th  sets o f  inequalities hold for  all t. Da, ca, and A are 
finite, posit ive constants.  

We note that  the condit ions (1)-(4) are consistent with those o f  Section 
2.4 o f  Ref. 3, which were sufficiency condit ions for  the equivalence o f  the 
canonical  and cons tant -magnet iza t ion  ensembles.  Condi t ions (4a) and (4b) 
establish the existence of  the quantit ies ax, % ,  and ~,, defined by 

a~ = 7 v f dVr r (5) 

for  i = x, y, z. The integrals in (5) extend over  all space. We note that  the 
quantit ies =x, % ,  and r are independent  o f  9'. 

Some of the thermodynamic results have been compiled in Ref. 6. 
6 See Eq. (2) of Ref. 3. 
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The constant-magnetization partition function for a lattice of N spin 
sites is written as follows: 

where 

Qm(M, A, N, y) = exp[-flNfm(~, X, N, y)] (6a) 

and 

fro(p, X, Y) = lim fro(P, X, N, y) (9a) 
N--+ o0 

The former represents an infinite system with zero long-range interactions, 
while the latter represents a system with nonzero long-range Kac interactions. 

The long-range limit y --> 0 is then defined by 

fro(P, X) = limfm(p, X, ~') (9b) 
y ~ 0  

assuming this limit exists. For  the classical Heisenberg model we must take 
the additional limit X -+ 0. In Ref. 3 the equivalence of the constant-magneti- 
zation ensemble to the canonical ensemble is established provided the limit 
x--~ 0 was taken after the thermodynamic limit. Further, as mentioned in 
Section 1, we obtain bounds on fro(0, X, N, y) in terms of the free energies of 
the individual cells. We therefore take the limit x --~ 0 after the thermodynamic 
limit of each cell, i.e., the limit X -+ 0 is the last limit taken. We then define 

fm~ = limfm~ X) (10a) 
X---~ 0 

p = M / N  (6b) 

x = A/N (60 

and fm(O, X, N, y) is the corresponding free energy density. The parameter A 
represents the interval over which each component of the net spin can vary 
in this ensemble (see Section 2.2 of Ref. 3). A superscript " 0 "  is used to 
denote a function which corresponds to a system with zero long-range Kac 
interactions, i.e., w~,~z = 0 for i = x, y, z and all sites k and l. But from (3) 

lim wi,~z = 0 (7) 
1'-"0 

for i = x, y, z, so that the superscript " 0 "  is equivalent to taking the limit 
y ~ 0 before the thermodynamic limit. Thus 

f:~ X, N) = l imA(e,  x, iV, y) (8a) 
y-o0  

We define two free energy densities in the thermodynamic limit, namely 

f o(p, X) = l i m f ~  X, N) (8b) 
N--# co 
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and 

fro(P) = limfm(l~, X) (10b) 
Z--+0 

In this article the existence of this last limit is proved and fro(p) is determined 
explicitly for the case of  zero short-range interactions plus Kac-type long- 
range interactions. 

3. UPPER B O U N D  ON THE FREE ENERGY 

Consider a (regular-linear, square, cubic) lattice of  spin sites for v = 
(1, 2, 3). Divide the lattice into P identical (regular-linear, square, cubic) 
cells, each containing n lattice sites. The division is made so that each site is 
contained in one and only one cell. For  any possible configuration of the 
system we denote the net spin of the ,~th cell by ma (Greek letters will be used 
to label cells). We therefore have the relations 

and 

nP= N ( l la)  

P 

ma = M ( l ib )  
2 = 1  

Note that we restrict N to values satisfying ( l la) .  

We now divide the . ~(8) Hamiltonlan N into the sum of  two terms, 

,ZP~) = T + o ~  ) (12) 

~ )  is itself a sum of  two terms: 

# ~ )  = ~ '  + .;r (13) 

The term ,gf' contains all intracell, short-range interactions, 

P 

,ZP' = ~ '-r (14) 
h = l  

where 

t = x , y , z  #r 

The first summation in (15) is over i = x, y, z, and the second summation is 
over all sites k and l such that both sites k and l are contained in cell ;~. The 
term ,;g'" is a "measure"  of the long-range, cell-cell interaction, given by 

P 

.N ~''= -�89 ~ ~ wi.x,m;.~m;., (16) 
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where the first summat ion  on i is over x, y, and z, and the second summat ion  
is over all cells ,~ and r. The terms Wx.~,, w~.A,, and w,~,~, are defined by 

wt,~, = Max wire (17a 
k~h;lE~ 

Similarly, define 

}}~,a, = Min wi,~l (17b) 
/r 

where i = x, y, z, and where site k is contained in cell A and site l is contained 
in cell ~-. The term T then contains all terms of,Ct~ ) that  are not  contained in 
~ ) .  

We write T as the sum o f  three terms, 

T = 7"1 + T2 + /'3 (18) 

where 
P 

TI=--�89 ~, ~, ~ q, ms,,kS,,l (19) 
t = x , y , ~  h ~  k , l  

ke~h;IE~ 

and 

P 

i = x , y , z  A ~  1r 
(2o) 

P 

i = x , y , z  h = 1  k:~l 
keh; l e a  

The term 7"1 can be interpreted as the Hamil tonian for short-range intercell 
interactions; 7"2 as the Hamil tonian for intercell, long-range interactions 
with coupling coefficients [Wx,kl -- Wx,X~], [Wy,kZ -- Wu.~,], and [w~,kz -- w~,~,]; 
and T3 is the Hamil tonian for long-range, intracell interactions. 

We can think o f  T1 as the interaction o f  the Ath cell with all other cells 
summed over A -- l, 2 , . . . ,  P. We find a bound  on ITs[ by determining an 
upper  bound  for  the magnitude o f  the interaction o f  a reference cell with 
each other cel l  Since we deal with the sum of  magnitudes and are interested 
in an upper  bound,  we may  allow the reference cell to be imbedded in an 
infinite lattice. This yields a weaker, but  nevertheless useful, upper  bound.  
This, multiplied by P, is a bound  for ]7"11. 

We first pick a reference cell and obtain an upper  bound  on the short- 
range interactions between the reference cell and all other cells except those 
3 ~ - 1 cells that  are immediately adjacent to the reference cell. We consider 
the interaction o f  the reference cell with a (linear, square, cubic) shell for  
v = (1, 2, 3) centered at the reference cell. The kth shell is made up of (2k  + 3) ~ 

- (2k + 1) ~ cells and is separated f rom the reference cell by at least k cells. 
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Using (2), the short-range interaction of the reference cell with the kth shell 
is bounded by 

3D2n2[(2k + 3) ~ - (2k + 1)v]/(kn~0~+~2 

Therefore a bound for the short-range interaction of  the reference cell with 
all other cells except the 3 ~ - 1 adjacent cells is given by 

3D2n~-'2 I~ ~ {[(2k + 3) ~ - (2k + 1)v]/k~+'2} 
k = l  

An upper bound on the magnitudes of  the short-range interactions between 
the reference cell and the 3 ~ - 1 adjacent cells is obtained by arguments 
completely analogous to those leading to inequality (37) of  Ref. 3. We thus 
find that an upper bound to the magnitude of the short-range interactions 
between the reference cell and the 3 ~ - 1 adjacent cells is given by 

3~+~vtn(~-~)lVD2[5 ~ + (v2~/,2)] + 3~+~D2(n2/t~+'~) 

where t is the width of  a corridor within a cell, as described in Section 3.2 of  
Ref. 3. Combining these terms and multiplying by P, we obtain the bound 

Iz l N[Bz(1/n'21~) + B2(t/n~,'O + Ba(n/t~+'2)] (22) 

where 

B1 = 3Dz ~ {[(2k + 3) v - (2k + 1)v]/k~+'~} (23a) 
h : = l  

Bz = 3~+1vD215 ' + (v2'/,2)] (23b) 

B3 = 3 ~ + 1Dz (23c) 

An upper bound on IZ=l is easily found by using (17a) and (17b), 

Iz~l ~< �89 ~ ~ (Aw=,~, + Aw~,~, + Aw~,~,) (24) 

where 

Aw~,a~ = wi,a~ -- r~.a, (25) 

for i = x, y, z. Similarly, an upper bound on IT3[ is found to be 

IT3I ~< �89 + w~.11 + w~,~) (26) 

where 

for  i = x, y, z. 

W~,xl = Max wi,~ (27) 
kel; le l  
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From Eq. (11) of Ref3, and (12), we can write the constant-magnetization 
partition function as 

Qm(M, PA, N, y) 

= fa ds('''f`a dsN'texp(-fiT - 3 ~ ' ) ] O ( M ' ,  M, PA) 

>/ [exp(-3rm~xllf, asl'...I,a dsN'[exp(-flJ#~)l]O(M" M, PA / (28) 

We have used PA as the interval over which Mx', Mu', and M~' can range. 
We allow rex', my', and m~' for each cell to range over an interval A. By such a 
convention, the parameter X for the total system of N sites is the same as the 
x parameter for each cell of n sites, i.e., 

Xtotal s y s t e m  = PA/N = A/n = Xst~g,o c e l l  (29) 

A weakened form of inequality (28) is then 

[ fo f ] Qm(M, PA, N, y) /> (exp -/3T~a~) dsz'.., ds~' O(m/, m,, A) 

• (exp - f l~ ' )  exp - / 3 ~ "  (30) 

where we have restricted the net spin of each cell to a particular set of values 
{ma} such that 

P 

ma = M (31a) 
h = l  

and 

n P =  N (31b) 

Equation (13) has been used to obtain the integrand of (30). Now, ~ "  can be 
bounded in terms of {ma} and A. We represent such a bound by ~r 
This bound is determined explicitly in (42) below. Inequality (30) is now written 
a s  

Q,~(M, pA, N, Y) 
(exp -/3Tm~x){exp[-/3~ax({ma}, A)]} 

• ds~'(exp-3a~,')O(m(, m,A)] 
P 

= (exp -flT~a~x){exp [-fl,~r,~x({ma}, A)]} 1--[ Qm0(m,, A, n) (32) 
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where (14) and (15) have been used. The superscript " 0 "  indicates a partition 
function for a system with no long-range interactions, i.e., 

Q,,~ dsl'...fn dsn' (exp -fi3et~174 m, ,A)  

= exp[-f lnfm~ A/n, n)] (33) 

Using (6) and (33), inquality (32) can be written as 

f [ M  P A  ~,) 

1 1 . 1 , ~ f o / m ~  A,~  
~< ~ Tm~x + ~ ( { m ~ } ,  A) + ~ z_, J,~ - ~ ,  -~ ] n (34) 

~=z \ n  

subject to (31a) and (31b). Since (34) is valid for any set {ma} satisfying the 
constraints, it is expedient to choose 

m~ = m~, T, A = 1, 2,..., P (35) 

Such a choice implies 

p = ma/n = M / N  (36) 

for all A. Since the free energy density in the constant-magnetization ensemble 
has the symmetry property given by Eq. (16) of Ref. 3, we can assume all 
three components of p are positive. Inequality (34) can then be written as 

fro(P, X, N, y) ~< (i/N)Tmax + (1/N).;,~'~a,:({n~}, A) + f ,  o([:, X, n) (37) 

where 

X = P A I N  = A/n (38) 

We now take the limit P -+ oo of (37), to obtain 

fro(P, X, ~') <~ lim 1 1 ,, v-~oo N T~ax + vlifn ~r~'max({n~}, A) +fm~ X, n) (39) 

We wish to obtain an upper bound on (16) where the {ma'} is evaluated in the 
region 

np~ <<. m~,a <~ np~ + A (40) 

for i = x, y, z and for all A = 1, 2 ..... P. In this region we note that 

Wx,a~mx,am'~,~ >1 wx.a~nZpx 2 - [Wx.m[(2Anpx + A 2) 

>1 wx.a~n=o~ z - lw~.a~](2An + A z) (41) 
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and similarly for  the y and z terms. We can now write the upper  bound  for  

P 

P 

+�89 + A) ~ ~ Iw,.~,l (42) 
| = X , y , ~  A@='~ 

Dividing by N, we obta in  

-�89 pg 
|~X,y,Z 

i= X,y,Z h q=~ 

We can now use L e m m a  2.14 of  Ref. 5 to take the limit P ~ oo o f  (43), 

l im (1/N).r <~ --�89 ~. p~2[n ~ Wi,IA ] 
P-.* r i= X,~I ,Z A = 2  

i=X,~I,Z ~=2 

Combin ing  (39) and (44), we find 

fm(I ~, x, y) ~< fm~ X, n) -- �89 

+aim 
1o_. 0o i = X,y,~ 

(45) 

In  Ref. 3 it is p roved  tha t  fro(p, X, ~') exists and is a convex funct ion o f  p. 
However ,  at this poin t  we do not know if the limit as y - +  0 o f  fro(p, X, ~') 
exists. We choose a fixed sequence {~'k} of  positive numbers  approach ing  zero. 
Fo r  such a sequence (45) represents an upper  bound  on fro(p, X, yk), so that  
we can conclude that  the quant i ty  7 lim~ sup fro(p, X, Yk) is either finite or equal 
to minus infinity. I f  lim~ sup fm(P,X,~'~) is finite, i.e., 

I limk sup fro(p, X, Yk)[ < oo (46) 

then it is always possible to choose an infinite subsequence of  {yk}, say {3j}, 
approach ing  zero, such tha t  the sequence fro(P, X, 8r converges to the limit 
superior  o f  the sequence fro(P, X, Y~), i.e., 

l im fm(l~, X, 8/) = lim~ sup fro(0, X, Y~) 
s -, o, (47) 

7 For a discussion of the concepts of limit superior and limit inferior see Ref. 7. 
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We then use the sequence {Ss} in (45) to obtain 

limfm(R, X, 3j) <~ fm~ X, n) - �89 ~ p2 lira In ~ w,,14(~j)] 
] ~ o o  ~ = x , y , z  j..-.oo t_ 4 = 2  J 

+ lim lira ( 1 / N ) T ~  

t=X ,y ,Z  j-~oo 

But it has been shown in Section 2 of Ref. 5 that 

lira [n 4__~2 w~,l~(~j) ] = a ,  (49) 
]--* oo 

for i = x, y, z, where ax, %, and as are defined by (5). We define the quantity 
if, which by similar arguments is equal to 

~ =  ~ ~vfdvr  1r ~ lim In ~ [w,,l~(~)I 1 (50) 
i = x , Y , Z  t = x , Y , z  6 ~ 0  h = 2  

Expressions (3) and (4) guarantee that ff is finite. Combining (48)-(50), we 
obtain 

lim fro(P, X, 8y) < fm~ X, n) - �89 ~ a,p, 2 
]---~ ~o ~ = X , y , Z  

+ lim lim (1/N)Tm~ + �89 + X),~ 
~ 0  P-.~ (51) 

provided limk sUpfm(p, X, ~'k) is finite. But for this case, since fro(p, X, 8i) is a 
convex function and the sequence converges to a limit, the quantity 
limj_. ~ fr~(P, X, 8j) must also be convex. We can then improve the bound, 
(51), as 

x, 5;) .< C.Z. fm~ X, n) - �89 lira A(P, 
].-* c o  ~ t = X ~ y , Z  

"x 

+ lim lim (1/N)T~,: + �89 + X)~  
~ o  e~o~ ) (52) 

The object C.E. is the convex envelope with respect to p, where 
C.E.{f(o)} means, for any function f(p), the maximal convex function not 
exceeding f(t~). Now using (47) and the fact that the last two terms in the 
brackets in (52) are independent of t~, we obtain 

limk sup fm(P, X, ~'k) < C'E'{fm~ x, n) - �89 ~ a'P' 2} 
i = X , y , z  

+ lim lim (1/N)T~x + �89 + X)ff (53) 
6 ~ 0  p ~ o o  
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provided lim~ sup fro(p, X, ~'k) is finite. The other possibility for 
limk sup fro(p, X, 7k) is 

lim~ sup fro(p, X, 7k) = - oo (54) 

However, since (53) is valid for this case as well, we conclude that (53) is 
valid in general. 

We now take the limit as n --+ oo. We have already shown (Section 3.7 
of  Ref. 3) that the thermodynamic limit offm~ X, n) converges uniformly, 
so that by Lemma 4.23 of Ref. 5 we can interchange the objects lim,_~ ~ and 
C.E. in the limit as n -+ oo of (53). Further, we can define a sequence, similar 
to that used in Section 3.3 of Ref. 3, such that as k --+ oo 

n ~ - +  ~ ,  &--+ oo 

but 

tk nk 
n~/~ ~ 0 and t~ ~+~2 

By (22)-(27) we then find that 

(55a) 

(60) 

lira lim lira (1/N)T,n~,: = 0 (56) 
r ~ o o  6"*0 p - - * o o  

The limit n -+ oo of (53) then yields 

limksupfr~(p,X, 7~) <~ C.E,(fmO(O,X)_�89 ~ .~p2} 
~ = X , y , , 7 .  

+ �89 + x)~ (57) 

We have one last limit to take, the limit x - +  0. We choose a fixed se- 
quence {xz} of positive numbers, approaching zero. At this point we do not 
know if the limit as 1-+ oo of limk sup fro(p, x~, ~'k) exists. However, (57) 
represents an upper bound to the sequence lim~ sup fro(p, Xz, Yk)- Therefore 
we conclude that either limz sup limk sup fro(O, Xz, 7k) is finite or equal to 
minus infinity. Let us suppose it is finite, i.e., 

[lim~ sup limk sup fro(to, Xz, 7~)1 < oo (58) 

For this case it is always possible to choose an infinite subsequence of {Xz}, 
call it {%}, such that the sequence limk sup fro(p, ~b, 7k) converges to the limit 
superior, 

lira limk sup fro(p, ~j, 7k) = lim~ sup lim~ sup fro(p, X', ek) (59) 
j --* oo 

Using the sequence {~TJ} in (57), we find 

lim limk sup f~(p, %, r~) << lim C.E.f fmO(p, %) _ �89 ~ .~p 2} 
]- - ,~  ]~oo i = X , y , 2  

- -  ~ 0 ( 5 5 5 )  
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where we have used 

lim �89 + ~7)~ = 0 (61) 
z/--* 0 

But we have already shown in Section 3.11 of Ref. 3 that fm~ ~TJ) converges 
uniformly tOfm~ We can therefore use Lemma 4.23 of Ref. 5 to interchange 
the objects limj_~ 0o and C.E. in (60), to obtain 

limlimksupfm(p,%,9'~) ~< C.E . f f ,~~189  ~ cqp~@ (62) 
] . - *  oo ~ = X , y , Z  

But by (59) this is just 

limz sup limk sup f(o, Xz, 9"k) < C.E.f fm~ - �89 ~ a~p~ 2) (63) 
i = X , y  , Z  

provided (58) holds. If (58) does not hold, then 

lim~ sup limk sup fro(p, X*, 9'k) = -- OO (64) 

and (63) obviously holds. We therefore conclude that (63) is valid in general. 

4. LOWER B O U N D  ON THE FREE E N E R G Y  

We start by dividing the lattice into P cells as discussed in Section 3. 
We also divide the spin-spin portion of the Hamiltonian into a sum of two 
terms, as in (12). By arguments similar to those leading to (28), we can bound 
the constant-magnetization partition function from above by 

Qm(M, PA, N, 9") 

~ ( e x p  flT~,:)fa dsl,...f, ds~,' (exp -f iY~)) |  M, PA) (65) 

In terms of the net spin of each cell, we only weaken inequality (65) by 
enlarging the domain of integration. Therefore 

Qm(M, p A, N, 9") 

< (exp BT~) ~ '  f l  If a ds/'"fads,/O(m~,',m~,,A)]exp-~3~? 
{m~} A = 1 

(66) 

where the summation is over mi,~ = kA, k = 0, + 1, _+ 2 ..... for i = x, y, z. 
The prime on the summation indicates the constraint M~ - pA ~< ~ m~,~ ~< 
M~ + pA. We examine the domains of the spin space indicated in (65) and 
(66) to verify that we have indeed enlarged the domain of integration. Let D 
denote the domain in spin space consistent with M~ ~< M( ~< M~ + pA, 
for i = x, y, z. Here D is the domain of integration in (65). Let D'({m~}) be 
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the domain of  spin space consistent with m~,~ ~< m~.~ ~< m~.~ + A for 
i = x, y, z and r = 1, 2 , . . . ,  P. Define/3 to be 

/3 = <~  D'({m~}) 

subject to the constraint M~ - PA ~< ~v= ~ m~,, ~< M~ + PA for i = x, y, z. 
~ ,=i  m~., + PA < M~ For all {m,} not included in this constraint, i.e., for P 

P and M~ + pA < ~ ,= ,  m~,~ for i = x, y, z, the condition M~ ~< M~' ~< M~ + 
pA is nowhere satisfied. This statement follows since ~e=, m~., <~ M," <~ 
y.e= ~ m~,, + pA for i = x, y, z. (Note that while ~ = ,  rn~,~ = rn~', it is not 
necessarily true that ~v=, m~,, = M~, for i = x, y, z.) We therefore conclude 
that D is contained in/3.  From its definition/3 is the domain of  integration 
in spin space indicated in (66). Thus (66) does indeed follow from (65). 

Now for each cell there are at most {2[(n/A) + 1]} a = (2X + 2) 3 different 
values of m,. Therefore in the summation in (66) there are at most (2X + 2) aP 
terms. Since each term in the summation is positive, we weaken the inequality 
(66) by 

Qm(M, pA, N, y) 

~< (2 X + 2)aP(exp/3Tm~=) 

x Max' I-I [f 
{m,.O k.h = i 

ds,' | ma, A)] exp - / 3 ~ }  (67) 

for i = x, y, z and where Max{=+ refers to the maximum of a function with 
respect to the set {ms} such that the constraint M~ - pA ~< ~ m~., ~< M, + 
pA is satisfied. Decomposing .o~/~(s>N according to (13), ~ "  [see (16)] can be 
bounded in terms of {m,} and A. We represent such a bound by ~"jn({m,}, A). 
This bound is determined explicitly by (73). Using (13) and (14), inequality 
(67) can then be written as 

Qm(M, pA, N, 9+) 

~< (2 x + 2)aP(exp flTmax) Max'((exp [--fl~min({m,}, A)]) 
{m~:} \ 

x a : ,  Is [fn ds,'...f rids"' (exp-fla~g'a ') O(ma', ma, A)] )  

= (2X + 2) 'p (exp/3Tm~x) 

• Max'~((exp [-fl~C~in({m~}, A ) ] ) ~  QmO(ma, A, n))  
{m~} k A = i 

(68) 
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for i = x, y, z. Using (6), we obtain 

< 3P ln(2x + ~) + ~r~.a,, 

+ In Max'~(eXP, mr, ~ [-]3+Zt'~n({m~}' A)]) ~ =  exp [ ~ ~+ ~ [ n '  n n (69) 

But since the logarithm is a monotonically increasing function, we can write 
(69) as 

fm/M PA 7') I,N, W'  N, 

l l ln(2x + 2) _ 1 

, 1 ,, 1 P o m a  '~) 
+ Min A) + f :  (--, (70) 

a=l \ n  

for i = x, y, z. 
We now examine the term (1/N)~+t~n({m~}, A); i.e., we seek a lower bound 

on (16), where {mA'} is such that 

rn~,~ ~< m~,a ~ mi~, + A (71) 

for i = x, y, z. In this region we note that 

Wx,a,mx'a,mx',, < w~,a~m~,amx.~ + Iw~,a,l[2An + A 2] (72) 

and similarly for the y and z terms. We can now write the lower bound for 

P 

t = X , y , ~  A ~ T ,  
P 

- �89  ~ A(Zn + A) ~ [w,,a~l (73) 
i = x p y p ~  A #- *; 

Using this in (70), we find 

fm/M PA ) 1 1 1 ~-~, --y, N, ~, >t - 3{3- -~ ln(Zx + 2) - ST T ~  

a (2n + A) w;.~,l - � 8 9  ~: . .~ 

W~,  h~F~i ,h lT l i  . ~ 

(74) ~ ] , "  I,n' n" n ] ;  
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for i = x, y, z. To obtain (74), we have used the fact that  the second term in 
(73) is independent o f  the set (m,}. 

We now restrict the class o f  long-range interactions by requiring 

w~.~, /> 0 (75) 

for i = x, y, z and for all it and T. Using this restriction and the inequality 

mam, <~ �89 2 + �89 2 (76) 

we find 

P 
-- ~ wx,h,mx,amx,, 

A#z 
P 

S 1 2  1 2  - ,.., Wx,a,(�89 + -2mx,O >1 

P P P 

= _ ~ 2 = (77) 
A~, A=I z= l;h:#z 

I f  we extend the sum on T to be over an infinite lattice, the inequality (77) is 
further weakened. Thus 

2 (78) - Wx,~,~mx.~mx,~ >1 - mx.~ wx,l~ 
h~, h=1 

We have used the fact that  Y a% x:~ e, Wx,~,, is independent o f  A and can there- 
fore be referred to any reference cell, say number  one. Similar expressions 
hold for y and z interactions, so that  (74) becomes 

fro(P, X, N,  ~') >1 -3 f l -~ (1 /n )  ln(2x + 2) -- (1/N)Tmax 

- � 8 9  + X) ~ Iws, ,l 
~ = X  y , Z  , = 2  

(Px} \ A=I 

-�89 (79) 

= M / N  (80a) 

p~ = m~/n (80b) 

and 
X = A/n = P A / N  (80c) 

We have extended the summat ion  on T to an infinite lattice to obtain the 
third term on the r ight-hand side o f  (79). 

for i = x, y,  z, where 
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We now examine the bracketed term in (79). Since the convex envelope 
of a function is always less than or equal to the function itself, we find 

( l /P)  ~ [fm~ X, n) - �89 ~ pyz, a(n ~ wj.,l~)] 
A = I  j = x , y , z  ~;=2 

" I t] - ~ (81) 
,~,=1 j =  x , y , z  z =  9. 

But by definition the function C.E., f(o) is a convex function. Therefore 

" [ (2 ) ]  ( l /P )  ~ C.E. fm~ X, n ) -  �89 ~, pp, x n wj.~ 
h = l  j = x , v , z  ~=2 

where 
P 

#:. = ( l /P)  E PJ.a (83a) 
A = I  

for j = x, y, z. The constraint listed below (67) then reduces to 

p j - X ~ <  #J~< P J + X  (83b) 

Inequality (79) can now be written as 

fro(P, X, N, r) 
>I -3fl-~(1/n) ln(2x + 2) - (1/N)Tmax 

-�89 + X) E ~ lwm*] 
J = X , y , ~  ~ = 2  

j = X , y , Z  1 = 2  

for i = x, y, z, where the minimum is taken subject to the constraint (83b). 
According to Section 3.7 of  Ref. 3, f o(p, X, n) converges uniformly to 

fm~ X)" Defining ~(p, X, n) by 

fm~ x, n) = fro~ x) + '(P, x, n) (85a) 

we are guaranteed that there exists an e(n, X), 

,(n, X) = Max l,(t~, X, n)l (85b) 
P 

such that 

lim ,(n, X) = 0 (85c) 
~,~0  
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Also, by Section 3.11 of Ref. 3, fm~ X) converges uniformly to fm~ and 
therefore there exists 8(p, X) and 8(x ) defined by 

and 

such that 

o( fm P, X) = U~~ + a(P, X) (86a) 

8(X) = MaxiS(p, g)] (86b) 
0 

lim 8(X ) = 0 

Since ~(n, X) and 8(X) are independent of ~, (84) can be written as 

fro(P, X, iV, y) ~> 

(86c) 

-3f i - l (1 /n)  ln(2 X + 2) - (1/N)Tmn ~ - e(n, X) - 3(X) 

J = X , y , z  " ~ 2  

[ )1 - 2 w , , , ~  ( 8 7 )  + Min 'C.E.  f m ~ 1 8 9  ~ p j n  
j =  X , y , Z  

for i = x, y, z. Now, by Eq. (16) of  Ref. 3, the last term on the right-hand 
side of  (87) has an argument which is completely symmetric with respect to 
the transformations pj ~ - p j  for j = x, y, z. Therefore the convex envelope 
of  this argument must have the same symmetry property. By the same 
arguments used in Section 3.8 and Appendix C of Ref. 3, the minimum of the 
last term in (87) occurs at the value of p closest to the origin. For  p with all 
positive components, the minimum occurs at A = p~ - X for i = x, y, z. 
Using this result and taking the limit of  (87) as P -+ m, we obtain 

f,,(P, X, Y) >i -3fl-~(1/n) ln(2x + 2) - lim (1/N)T,~x - E(n, X) - 8(x) 
p-+ oo 

J=X,y ,~  Z~2 

+ ( C ' E ' [  fm~ - �89 j=~x,u,~PJ2( n ~=2 ws'l~)])Z,=o,-z (88) 

for i --- x, y, z. 
We now take the limit as 7 ~ 0. But there is no guarantee that the 

quantity limy.ofm(p, X, Y) exists. Choose a fixed sequence {yk} of positive 
numbers approaching zero. Since (88) represents a lower bound and (63) an 
upper bound to the sequence fro(P, X, 7k), we conclude that the quantity 

lim~ inffm(p, X, Yk) 
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is finite. Then we can always choose an infinite subsequence of  {7'k}, call it 
{~r for which fro(p, X, ~r converges to the limit inferior, i.e., 

lim fro(P, X, ~j) = limz inffm(O, X, ?'~) (89) 
j ~ o o  

Choosing the sequence {3j}, [not necessarily the same sequence used in Section 
3] we find, following an analysis similar to that leading to (53), 

limk inffm(p, X, Yz) 

-3/3-1(1/n) ln(2 X + 2) - lim l im(1/N)Tm~x - e(n, X) 
6--*0 p--* co 

J=X,y,~ 

for i = x, y, z. Now taking the limit n -+oo as described in (55), and using 
(85), we obtain 

lim~ inffm(p, X, 7~) 

>/ - $ ( X ) - � 8 9  {C.E.[fm~189 ~ c9#,2]},,=:,_z (91) 
j = X p y j g  

for i = x, y, z. 
Finally, we take the limit X ---> 0. Let {Xz} be a fixed sequence of  positive 

numbers, approaching zero. Since each term in the sequence 

limk inffm(p, Xt, ~'~) 

is bounded above and below by (63) and (91), respectively, we know that the 
quantity 

limz inf limk inffm(p, Xz, Y~) 

is finite. We can then always choose an infinite subsequence of {x~}, call it 
{~} (not necessarily the same subsequence used in Section 3), such that 
limk inffm(p, ~7~, Ye) converges to the limit inferior, i.e., 

lim limk inffm(l~, ~ ,  ~'~) = lim~ inf limk inffm(p, X~, ~'k) (92) 
i ~ o o  

We can carry out an analysis similar to that leading to (63) to obtain 

]=x , y ,~  

tity 

(93) 

The inequalities (63) and (93) together imply the existence of the quan- 

lim limf,~(p, X, ~') = fm(~) (94) 
X--~O y~O 
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and that 

fm(O) = C.E.~f~ - �89 ~ atpi 2) (95) 
S= X , y , ~  

The lower bound, (93), has only been carried out for the case of all long- 
range coupling constants being purely ferromagnetic, according to (75). 
Presumably, this bound can be proved for a more general class of coupling 
constants by a method similar to that carried out for a classical fluid in 
Section 5 of reference 5. 

5. CONVEX ENVELOPE CONSTRUCTION FOR SYSTEMS WITH 
ZERO SHORT-RANGE INTERACTIONS 

5.1. The Free Energy Density 

The free energy densityfm~ with zero long-range Kac interactions can 
be determined indirectly by evaluating the Helmholtz free energy density 
fc~ ~ using the canonical ensemble and employing Eq. (106) of Ref. 3, i.e., 

fm~ = t~H~ + fc~ ~ (96) 

where p(H ~ is given by 

p, = - /z -1 af~~ ~ H~, ~ H~~ ~ (97) 

for i = x, y, z. Here H ~ is a fictitious magnetic field associated with a system 
with zero long-range Kac interactions. For the case of zero short-range 
interactions 

Qc~176 = [f  ds exp([3~It~ "s)]N 

= [ ~  d(, / ;  dO (sin O) exp(~t~H~ cos O)] N 

= [(4~r//3/xn ~ sinh(/3/xH~ ~ (98) 
o r  

fcO(HO) = /3-1  ln(fitzHO/4~r) _ fl-1 ln[sinh(/3t, HO)] (99a) 
where 

H ~ = [H ~ + H ~ + H~ 1/2 (99b) 

Using (96) and (97), we obtain 

fm~ = /zH~ + /3 -1 ln(fl/zn~ - /3 -1 ln[sinh(/3/~H~ (100) 

where from Eq. (7) of Ref. 3 

p(H ~ = [coth(fitzn ~ - (1/flt~n~176 ~ (101) 
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Combining (95), (100), and (101), we find 

fro(P) = C.E.ffm~ - �89 

where 

cqp~ ~} (102) 
i = X,Y,,~ 

p(H ~ = L(I~I~H~176 ~ (103) 

The term L(t) is the Langevin function, 

L(t) = coth t - Off)  (104) 

Taking the scalar p roduc t  o f  (103) with itself, we find 

p = Iol  = L([3t ~H~ (105) 

In  determining the convex envelope construction, it is convenient to 
introduce a function equal to the bracket term in (102), 

fm*(O) = f ~ _ �89 ~ ~p2 (106) 
i =  X , U , Z  

fm*(P) so defined is equal to fr~(P) except in those regions where the convex 
envelope construct ion is employed. In  examining the free energy density, 
the following properties o f  the Langevin function are helpful: 

L(0) = 0 (107a) 

L'(0) = �89 (107b) 

L'(t) <~ (1/t)L(t) (107c) 

5.2. The Convex  Envelope Const ruc t ion  

We consider the case o f  general anisotropy, for which ~x, %, and % are 
in general not  equal. Suppose c~ is the largest o f  ~x, %, c~, i.e., 

% /> ~x, %; ~ ,  %, ~ /> 0 (108) 

We first show the proper ty :  

(i) I f  %fi ~< 3, then fm*(P) is a convex function o f  p. 

To verify proper ty  (i), it is sufficient 8 to show that 

g(t) * . . . . . . .  =fro (P,, + pxt, pu + Pu t ,P~ + pit) (109) 

8 A function of several variables f(r) is said to be convex in r if the inequality 
f(~rl + fir2) ~< ~f(rl) + fif(r2) is satisfied everywhere for % fi >1 0 and ~ + fl = 1. 
An equivalent definition of convexity is that the function g(t), defined by g(t) = 
f(rl '  + tr(), be a convex function of t for all rl' and r2'. To verify that these definitions 
are equivalent, choose r~ = rl '  + tit2' and r2 -- r1' + tar2'. See, for example, Ref. 8. 
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is a convex funct ion o f  t for  any p, '  and  p", i = x, y, z. F r o m  (105), (106), and  
(109), it  fol lows tha t  

= - - a~)p~ + (c,~ - %)p~ d-~ ~ p,2 + (~z , ,2 -2 

[ O H  ~ 

x Px( + Px t) + Ou(Pu + Pv t) + Oz(P~ + o;t 2 
P 

where  

and  

( l lOa)  

(110b) 

t tt X 2  
P = [ ( P x ' +  pxt) 2 + (P~ + Pu t ) + (Pz'+ P'~t)2] I/2 

(11Oc) 

F r o m  (105) and  (107c) we observe tha t  [(~H~ - (H~ is nonnegat ive.  
The terms (az - ax) and  (az - %) were chosen to be posit ive.  By (105), 
(107b), and  (107c), [(t~H~ - %] is nonnegat ive,  p rov ided  %fl ~< 3. W e  
thus conclude  tha t  for %/3 ~< 3 each coefficient in ( l l 0 a )  is nonnegat ive .  
Therefore  g( t )  is a convex funct ion 9 o f  t. This  in turn  implies tha t  for  %/3 ~< 3, 
fm*(O) is a convex funct ion in t~. We have thus p roved  p rope r ty  (i). 

We  examine the ex t rema offm*(p), for  c~fi > 3, in a p lane  de te rmined  by  
px, py = const .  To de te rmine  the ex t rema o f fm*(p  x = const ,  py = const ,  p~), 
we set Ofm*(Px, Py, Pz)/~Pz = 0. This  condi t ion  is always satisfied for O~ = 0 
and somet imes  satisfied for IOzl > 0. We define P(Ox, Oy) as the max imal  
so lu t ion  o f  

0 <<. p = L(fla=#) ( l l l a )  

Cor responding ly ,  we define t~ by  

fiz ---- (#2 _ px2 _ p 2)1/2 ( l l l b )  

F r o m  (105) and (107) we find the proper t ies  

(iia) I f ~ f i  > 3 and  ( p 2  + py2)1/2 /> #, thenf,~*(px = const ,  pv = const ,  

p~) has  one ex t remum,  at  p~ = 0. Also D2fm*(px, pv, pz)/~pz 2 ~ O. 
The m i n i m u m  at p~ = 0 is an absolute  min imum.  

(lib) Ifa~fl > 3 and ( p 2  + pu2)~12 < ~, thenfm*(p~ -- const,  p~ -- const ,  
t'~) has  three extrema.  The ex t remum at p~ = 0 is a relat ive maxi-  
mum.  The o ther  ex t rema are at p~ = + p:,  defined by (!11). Also 

9 This follows from the theorem: Suppose f ( t )  and df(t)/dt are continuous. Then f ( t )  
is convex in t if df(t)[dt is a nondecreasing function of t. See Ref. 8. 
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~2fm*(Px, Pu, p~)/~p2 >1 0 for  [O~] /> p~. The min ima  at p. = _+ #~ 
are absolute min ima  andfm*(px,  p~, p.) = fm*(Ox, Ou, --#~)" 

F r o m  (i) and  (ii) we conclude:  

(1) Ifa~fl ~< 3, thenfm*(px, or,  P~) is convex in e and is therefore equal to 

fro(P). 
(2) I f  a~fi > 3, then for  fixed p~ and pu, fm*(P~, Pu, P~) is not  everywhere 

convex ~~ in pz. 
We now surmise the construct ion for  a~fi > 3 and then verify that  it is 

indeed the correct  construct ion.  

F r o m  proper ty  (ii) it is concluded tha t  if  we look in any  plane determined 
by p~ and Pu being constant ,  the maximal  function which is convex in p~ is the 
cons tan t f~*(px ,  pv, #~) for  p < ft. This suggests the construct ion:  

(2') I f  a~fi > 3, then fm(Px, Pu, Pz) = fm*(Px, Pv, fiz) provided p < #. I f  
p >~ #, then fm(px,  py, Or) = fm*(p~,  py, pz). 

To  verify that  (2') is the correct  construct ion,  we show that  fro(p) so defined is 
a convex function of  p. 

F r o m  (106) and (111) we find that  for  O interior to the construct ion region 
defined above  

fro(P) = fmO(fi) -- �89 z -- �89 - a~)pff  - �89 - ~)p 2 (112) 

for  0 ~< p < t~ and a~/3 > 3 .  To  verify that f~(px,  Pu, Pz) is everywhere convex, 
we show that  

t / t  , 

g( t )  = f m ( P x '  + p l t ,  Pu + Put + Pz + p l t )  (113) 

is a convex function of  t for  any  p / ,  P7 (i = x ,  y ,  z).  F r o m  (105), (106), (112), 
and (113) we find for  a~fi > 3 

dg( t ) /d t  
i /  t ( Z  i t  i st 

= (az -- ax)Px(Px + px t) + (az -- ,)Pv(Py + Put), for  p < t~ 

= (t z H ~  - -  azp)[Px(Px' + Px t)  + Pu(Pu' + Pu t) + Pz(Pz' + Pzt)]P -1 
+ ( ~  - ~x)p~(p~' + p l t )  + ( ~  - -~)p;(p~' + p~t), for  p / >  

(114a) 
where 

n " , 2  P = [(Px' + P"t)  2 + (Pv' + Pu t ) + (P~' + P~t)2] 1;2 (114b) 

We thus observe that  at p = # (which is the condit ion determining the onset 
o f  the construct ion region) dg( t ) /d t  is cont inuous [see (11 la)]. F r o m  (112) 
and f rom (110) and the a rgument  following (110) we note that  d2g( t ) /d t  2 is 
everywhere nonnegative.  [In ( l l0a) ,  ( t z H ~  a~ is nonnegat ive  for  

lo Note that if ,(r) is convex in r = (x, y, z), then f(x, y, z) is also convex in x. 
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~zP > 3 i fp  >/ p. This follows from (107b) and (105)]. We therefore conclude 
(see footnote 9) that the function fro(P) is indeed a convex function of p. 

This construction was defined such that in any plane determined by px 
and p~ being fixed, the construction is the maximal convex function of oz. 
Therefore the construction in all three variables cannot exceed this con- 
struction. But we have shown that this construction is convex in p. We thus 
conclude that this construction is the desired convex construction and that 
f (o)  = C.E.{fm*(p)} is determined by construction (2'). 

6. E Q U A T I O N S  OF STATE 

We discuss the equations of state for the general anisotropic Heisenberg 
model. We have noted that for ~fl  > 3 there is always a region (p < t~) over 
which a convex construction is necessary. Interior to this construction 
region fro(P) has a different functional form than in the region exterior to the 
construction. It  is then reasonable to associate # with the onset of  a phase 
transition. The validity of  this association is borne out by an examination of 
the equations of  state. While a convex construction is necessary if ~z/3 > 3, no 
such construction need be employed if ~A3 ~< 3. The critical temperature is 
then defined by 

~zflc= 3 (115) 

An expression for p is obtained by combining (11 la) and (105). t~ is the 
maximal (/~ >/ 0) solution of 

# = L(/~zt~) (116) 

We note that # is a function of temperature only. A plot of  t~ vs. T/TCis  shown 

1,0 
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Fig. 1. Plot of/; vs. T / T  c for a classical Heisenberg model. This plot is a phase boundary 
curve for a region (T < T c and p < ~) requiring a convex construction and a region 
(p > ~) not requiring a construction. 
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in Fig. 1. This is interpreted as a phase boundary curve for a region (T < T c 
and p < #) in which a convex construction is necessary and a region (p > #) 
in which no construction is employed. 

The net spin per lattice p as a function of  the magnetic field is deter- 
mined by Eq. (18) of  Ref. 3. From (106) we find that for %fl ~< 3, or %fi > 3 

but p /> tL 

ixH, = IxH~ ~ - a~p~ (i = x ,  y , z )  (117) 

subject to (101). From (112) we find that for %fl > 3 and p < # 

t ,Hx  = ( ~  - ~.)Px (118a) 

tzHy = (% - %)p~ (118b) 

Hz = 0 (118c) 

Equations (101) and (117) constitute a mean field-type equation of state. 
Equations (118) arise due to the convex envelope construction. Since the 
general equations of state are not transparent, we examine several special 
cases. 

Case a: 

H x = H y  = 0  (119) 

Equations (101) and (117) for this case imply 

p~ = p~ = 0 (120a) 

and 

p~ = L( f i t ,Hz + fia,p~) (120b) 

for a~fl <<, 3, or a~fl > 3 but p /> #. Equations (118) imply 

H,  = 0 (121a) 

and 

Px = P~, = O, [Pal < # (121b) 

if %fl > 3 and p < f. Equation (120b) is a mean field solution for a classical 
Ising model, and (121b) is a Maxwell-type construction for this solution. 
Figure 2 is a plot of  p~ vs. tzH~/% for this case. Curves are shown for tem- 
peratures above and below the critical temperature. 

Case b: 

H~ = Hz = 0 (122) 
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1~ I .8 T =,8 

.4 ~ " 

.2 

0 /5 i)0 i .5 ' 

Fig. 2. Plot of p, vs. i~Hz/~, for the classical Heisenberg model (02, H, >i 0). Plots are 
drawn for case a: ~= > ~ ,  a~; H~ = H~ = 0. For this case p~ = o~ = 0. Shown are 
isotherms for temperatures above and below the critical temperature. 

Equat ions (101) and (117) for this case imply 

pu = p~ = 0 (123a) 

px = L(fll~Hx +/3c~xpx) (123b) 

i fa~f l  ~< 3, or a~/3 > 3 but p /> #. Equat ions (118) imply 

t*Hx = (a~ - e~x)px (124a) 

and 

py = 0, (p,fl + pz2) 1~2 < # (124b) 

if ~/3 > 3 and p < t~- Equat ion (123b) is a mean field equation for all t o 
exterior to the construct ion region. Equat ion (124a) indicates a linear be- 
havior  between p,~ and Hx for to interior to the construct ion region. Also 
indicated is that  p~ can take on any value satisfying (124b) for to interior to the 
construct ion region. This nonzero transverse (to the magnetic field) compo-  
nent o f  the net spin per lattice site is consistent with the discussion of  domi-  
nant  transverse coupling for the quantum Heisenberg ferromagnet  given by 
Fisher(% From (124) the magnetic field/Tx corresponding to # at the onset 
o f  the phase transit ion is given by 

1~t7~ = (az - C~x)P (125) 

is already plotted in Fig. 1. Figure 3 is a plot  o f  p~ vs. t ~ H ~ / ~  for this case, 
where we have chosen 2ax = az. Plots are shown for temperatures above and 
below the critical temperature. 
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Fig. 3. P lo t  o f  px vs. p.Hx/,z~, f o r  the classical Heisenberg model  (px, Hx  >i 0). Plots are 
d rawn  fo r  case b:  a~ > ax, au ; Hv --- Ha = 0; w i th  a~ = 2a~. F o r  this case py -- pz = 0 
over the nonlinear portion of the curves. Over the linear portion of the curves p~ can take 
on any value such that (p,fl + p 2)~2 < ~. Shown are isotherms above and below the 
critical temperature. 

The specific heats at constant  magnetic field and at constant  magnetiza- 
t ion are defined, respectively, by 

CH = -- T[O2f~(T, H)/OT2]rI (126a) 

and 

C o = - T[~2f~(T, p)/OT2]o (126b) 

Sincefi(T,  H)  andfm(T, p) are related by a Legendre t ransformat ion [see Eq. 
(106) o f  Ref. 3], we obtain the relation 

Cn = Cp - tzT ~,  (OH~/OT)p(~pjOT)H (127) 
~, = X p y  , Z  

F r o m  (101), (102), (126b), and the convex envelope construct ion [(1 l l) and 
( l l2) ]  we find 

I ( T ~  2 (T/3pTO2 - csch2(3pT~/T) 
3p-f-  1 - ( ~ / ~ p ~ ) 2  = ~ 3 # T C ) / T ]  (128) 

C d k = ]  if  T <  T c and p < p 

1,0 otherwise 

where k is Bol tzmann 's  constant.  Similarly we find that  

-(ILTIk) ~ (~HJ~T)p(OpJOT)n = 0 i f  T <  T O 
t ~ X , y , Z  

and p < ~  

(129) 
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( that  is, i f  p is in ter ior  to  the  cons t ruc t ion  region).  We  examine this te rm for O 
exter ior  to the cons t ruc t ion  region in the two cases descr ibed above.  

C a s e  a:  

H= -- Hy = 0 (130) 

From (101) and  (102) we find 

/zT ==~ ( ~ H , ) ( ~ p ~ )  = u  2 

subject  to  

u -  2 _ csch2u 
1 - ( 3 T C / T ) ( u  -2  - csch2u) (131a) 

where  

( T / 3 T C ) u  - r~ = L ( u )  (131b) 

r~ = ~H~/cz~ (131c) 

Equa t ions  (131) are val id  for  T > T c, and  for T < T c but  p > ft. F igure  4 
is a p lo t  o f  Cz~/k vs. T / T  c for  this case. I l lus t ra t ions  are shown for zero and  
nonzero  Hr. F r o m  (127) we note  tha t  if  H ,  = 0, then Cp = C~r for p < p. 

F o r p  t> fi, C a = 0 .  

C a s e  b:  

Hu = H~ = 0 (132) 

2.5 

2.0 

1.5 

1.0 

.5 
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r~=O 

i 
,=. 

i I 

.5 1,0 1.5 

Fig. 4. Plot of C~/k vs. T I T  c for the classical Heisenberg model. Plots are drawn for 
case a: ~ . >  ~ , ~ ;  Hx = Hy = 0 .  Shown are curves for zero and nonzero H. 
(r= = ~H./~.) .  The plot for H. = 0 (r. = 0) is equal to Cp/k for 101 < ~. For 101 /> P, 
C,) = O. 
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F r o m  (101) and (102) we find 

/zT =~, ( a H i ) ( a 0 ~  ) = v  ~ 

subject to 

where 

v -  ~ - csch2v 
1 - (3r~/T)(,~x/~,z)(v -~ - csch~v) (133a) 

( a J a . ) ( T / 3 T g v  - rx = L(v)  ( 1 3 3 b )  

r~ = tzH~/ax (133c) 

Equat ions  (133) are valid for  T > T c, or  T < T c but  p > #. Figure 5 is a plot  
o f  C n / k  vs. T / T  ~ for  this case, where we have chosen ~ = 2a~. Curves are 
shown for  zero and nonzero  H x .  We note that  there is always a discontinuity 
in CH at  the tempera ture  corresponding to the phase  transition. 

For  this case the fact that  CH is independent  o f  the applied magnet ic  
field if  a~fi > 3 and p < p follows [as an alternative to the arguments  leading 
to (128)] f rom the Maxwell  relation (S being the en t ropy  per  lattice site) 

, = ~-~-T]u (134) 

Fo r  H~, = H~ = 0 (124a) implies that  the r ight-hand side o f  (134) is zero i f  
ag3 > 3 and  p < p. We thus conclude that  for  this case the en t ropy  is inde- 
pendent  o f  the applied field. This in turn implies that  C~x is independent  o f  the 
applied field. 

r x  = 

! i 

2.o I I 
I i 
I I 
I I 1.5 I I 

5 \  : i i i 
, i 

I .o ! , - ' r . . . . ~  ~ : . a  

i 
0 .5 1 .0  1,5 

Fig. 5. Plot of C~/k vs. T / T  c for the classical Heisenberg model. Plots are drawn for 
case b: ~ > ~x, %; H~ = H~ = 0; with a~ = 2ax. Shown are curves for zero and non- 
zero/-/x (rx -- i~Hx/a~). There is always a discontinuity at the temperature corresponding 
to the phase transition. 
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7. C O N C L U D I N G  R E M A R K S  

In this article we have presented an exact solution to the classical aniso- 
tropic Heisenberg model with long-range Kac interactions. For the special 
case of zero short-range interactions we have analyzed in detail (see Section 6) 
the thermodynamics of this model. The thermodynamic behavior of the long- 
range anisotropic Heisenberg model was found to be highly sensitive to the 
degree of anisotropy. In particular, the qualitative features of the thermo- 
dynamics depend dramatically on whether the dominant coupling coefficient 
(all coupling coefficients nonnegative) is parallel to or transverse to the 
magnetic field. Qualitatively, the results can be summarized in the following 
way. If the coupling coefficient parallel to the magnetic field is larger than the 
coupling coefficients in the plane perpendicular to the magnetic field, the 
usual Ising-type mean field results are recovered (see Figs. 2 and 4). If, 
however, the dominant coupling coefficient is in the plane perpendicular to 
the magnetic field, the thermodynamic behavior is quite different. For this 
latter case the magnetization is a continuous function of the magnetic field 
and there is no spontaneous magnetization (see Fig. 3). There is, however, a 
phase transition, which manifests itself by a discontinuity in the magnetic 
susceptibility and specific heat (see Figs. 3 and 5). For the special case of the 
isotropic Heisenberg model these two cases degenerate to a single case 
characteristic of an Ising-type mean field result. As one would expect from a 
model with long-range Kac interaction, the above results are independent 
of the dimensionality of the system. This independence of dimensionality 
emphasizes an important distinction between models with long-range Kac 
interactions and models with short-range interactions. The above results 
for the isotropic Heisenberg model with long-range interactions must be 
contrasted with the fact that the one- and two-dimensional (quantum) 
Heisenberg models with nearest-neighbor interactions do n o t  exhibit a 
spontaneous magnetization. 

We also wish to take particular note of the form of the constant- 
magnetization free energy density for the classical Heisenberg [see (95)] spin 
systems with long-range Kac interactions. This type of solution also arises 
in the solution of the quantum Ising model with long-range Kac interac- 
tions. (lm The constant-magnetization free energy density is found to be equal 
to the convex envelope of the sum of two terms. These terms are (1) the free 
energy density for a system with n o  long-range interactions and (2) term(s) 
involving the product of a "characteristic" long-range coupling parameter 
with the square of a net spin density. The analysis can then be thought of as 
"decoupling" the long- and short-range interactions into the sum of two 
terms. These terms constitute the argument of the convex envelope in the 
expression for the constant-magnetization free energy. 
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This form for the free energy density for systems with long-range Kac 
interactions appears to be quite general. Lebowitz and Penrose (5~ have solved 
the problem of a classical fluid with long-range Kac interactions. Their 
analysis was carried out in the canonical ensemble. The Helmholtz free energy 
density a(p) there obtained is given by 

a(o) = C.E.{a~ + �89 (135) 
where p in this case is the particle density, a~ is the Helmholtz free energy 
density for a system with no long-range interactions, and c~ is a '~ character- 
istic" coupling parameter.  The work of Lebowitz and Penrose was extended 
to quantum fluids by Lieb (11~. The formal solution to the quantum problem is 
also given by (135). The solution is valid for Boltzmann, Bose, or Fermi 
statistics. The different statistics enter a~ and do not appear in the long- 
range term �89 

On the basis of  these results for classical and quantum fluids it is tempt- 
ing to speculate that the formal solution to the quantum Heisenberg model 
with long-range Kac interactions is the same as that of  the corresponding 
classical system [see (95)]. Furthermore, it is known that this is in fact the 
case for Heisenberg systems with constant interaction potentials whose 
strengths are proportional  to N -1. This has been demonstrated in the 
canonical ensemble (6>. However, this framework does not appear to be 
useful with regard to Heisenberg systems with Kac potentials. Unfortunately, 
an appropriate definition for the constant-magnetization ensemble is com- 
plicated by the fact that the components Mx, M~, and M~ (M~ -- Z~= ~ s~,k for 
i = x, y, z) of  the total spin operator do not commute with each other. A 
potential way of circumventing this difficulty is to employ an ensemble for 
which one component  of  the total spin and the magnitude of  the total spin 
are held fixed. At present a complete solution is still lacking. 
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